B. Tech
(SEM III) ODD SEMESTER THEORY EXAMINATION 2009-10
DATA STRUCTURE USING 'C'

Time: 3 Hours] [Total Marks: 100

Note: (1) Attempt all questions.
(2) All parts of a question should be attempted at same place.

1 Attempt any four parts of the following: 5x4=20

(a) Define data structure. Write down the difference between 'logical' and 'physical' structure of data using a suitable example.

(b) Write a program in 'C', that counts total number of 'words' in a given input text.

(c) Suppose you have an array to numbers denoted by num[]. Write the iterative and recursive procedure to find the sum of 500 numbers. Compare the time and space-requirement of both algorithms.

(d) Write down algorithm for evaluation of postfix expression using stack.
(e) Each element of an array \(X[30][50] \) requires 4 bytes of storage. Base address of \(X \) is 2500. Determine the location of \(X[10][10] \) when the array is stored as

(i) Row major

(ii) Column major

(f) Explain divide and conquer method and apply it on the merge sort using some example.

2 Attempt any four parts of the following: 5x4=20

(a) You are given two polynomials. Represent the polynomials in a suitable data structure and write an algorithm to add the two polynomial functions.

(b) Suppose LIST is a circular list in memory. Write an algorithm which deletes the last node from LIST.

(c) Implement a queue as a linked list. Write algorithm for performing insertion and deletion in it.

(d) Show, how a priority queue can be implemented using linked list.

(e) Given a queue and an empty stack, write a function that uses the stack to reverse the order of all items in the queue.

(f) Write algorithm to add an item to each end of a dequueue.

Attempt any two parts of the following: 10x2=20

(a) Write down the 'iterative' and 'recursive' algorithms for In order traversal of a binary tree. What is the run-time of the algorithms?

(b) (i) Write a 'C' function that accepts a pointer to a binary tree and a pointer to a node of the tree and returns the level of the node in the tree.

(ii) Consider the following algebraic expression:

\[E = (2x + y)(5a - b)^3 \]

Draw the tree \(T \) which corresponds to expression \(E \).

(c) What is hashing? Give the characteristics of hash function. What are different methods of handling overflow in hashing?

Attempt any two parts of the following: 10x2=20

(a) (i) Write an algorithm for sorting a set of numbers in descending order using selection sort. Analyse the algorithm.

(ii) Illustrate the operation of HEAP-SORT on the following array:

\[A = \{5, 13, 2, 25, 7, 17, 20, 8, 4\} \]
(b) (i) Define B tree. Explain the insertion operation of B tree with example. What are the applications of B-tree?

(ii) Insert the following keys, in the order shown, to build them into an AVL tree:

M, T, E, A, Z, G, P

(c) Suppose a graph G is input by means of an integer M, representing the nodes 1, 2, ..., M and a list of N ordered pairs of integers, representing the edges of G.

Write a program in C language to find the adjacency matrix of graph G.

5 Write short notes on any four of the following:

(i) Sparse Matrices and their applications
(ii) Kruskal's algorithm
(iii) Tower of Hanoi problem
(iv) Time-space trade-off with suitable examples
(v) Principles of recursion with example
(vi) Garbage collection and compaction.

5×4=20