B.Tech.
(SEMESTER-IV) THEORY EXAMINATION, 2012-13
MATHEMATICS – III

Time: 3 Hours
[Total Marks: 100]

Note: Attempt questions from each section as indicated. The symbols have their usual meaning.

SECTION – A

1. All parts of this question are compulsory:
 \[10 \times 2 = 20\]

 (a) Find the constants a, b and c such that the function \(f(z) = -x^2 + xy + y^2 + i(ax^2 + bxy + y^2) \) is analytic.

 (b) Evaluate the integral \(\int_C \frac{e^{iz}}{z^3} \, dz \), where C: \(|z| = 1 \).

 (c) The first-four central moments of a distribution are 0, 2.5, 0.7 and 18.75. Comment on the kurtosis of the distribution.

 (d) The equations of two lines of regression are \(3x + 12y = 19 \) and \(9x + 3y = 46 \). Find the mean of \(x \) and the mean of \(y \).

 (e) Enlist the methods by which Trend values can be determined.

 (f) Find the moment generating function of Poisson distribution.

 (g) Show that \(hD = -\sinh^{-1}(\mu \delta) \).
(h) Find the value of $\Delta^2(ab^c)$.

(i) Show that $y' = \frac{1}{h} \left[\Delta y - \frac{1}{2} \Delta^2 y + \frac{1}{3} \Delta^3 y - \frac{1}{4} \Delta^4 y + \ldots \right]$.

(j) Calculate the value of $\int_4^{5.2} \log_e x \, dx$ by Trapezoidal rule.

SECTION – B

2. Attempt any three parts:

(a) Using the method of contour integration, evaluate $\int_0^{\infty} \frac{dx}{(x^2 + a^2)^2}$.

(b) Find the multiple linear regression of x_1 on x_2 and x_3 from the data relating to three variables:

<table>
<thead>
<tr>
<th>x_1</th>
<th>4</th>
<th>6</th>
<th>7</th>
<th>9</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_2</td>
<td>15</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>x_3</td>
<td>30</td>
<td>24</td>
<td>20</td>
<td>14</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>

(c) In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the mean and standard deviation of the distribution.

(d) Perform four iterations of the Newton-Raphson method to obtain the approximate value of $(17)^{\frac{1}{3}}$ starting with initial approximation $x_0 = 2$.

(e) Find the value of $y(1.1)$, using Runge-kutta method of fourth order, given that $\frac{dy}{dx} = y^2 + xy$, $y(1) = 1.0$, take $h = 0.05$.

3987 2
3. (a) Using Cauchy’s integral formula, evaluate
\[\int_\mathcal{C} \frac{\sin \pi z^2 + \cos \pi z^2}{(z - 1)(z - 3)} \, dz \]
where \(\mathcal{C} : |z| = 2 \).

(b) Prove that \(\cosh \left(z + \frac{1}{z} \right) = a_0 + \sum_{n=1}^{\infty} a_n \left(z^n + \frac{1}{z^n} \right) \),
where \(a_n = \frac{1}{2\pi} \int_0^{2\pi} \cos n\theta \cdot \cosh (2\cos \theta) \, d\theta \).

(c) State and prove Cauchy’s Residue Theorem.

4. (a) Find the least squares fit of the form \(y = a + bx^2 \) to the following data:

<table>
<thead>
<tr>
<th>x</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

(b) Show that the regression co-efficients are independent of the change of origin but not of scale.

(c) Find the moment generating function for triangular distribution defined by

\[f(x) = \begin{cases}
 x, & 0 \leq x \leq 1 \\
 2-x, & 1 \leq x \leq 2
\end{cases} \]

5. (a) If the variance of the Poisson distribution is 2, find the probabilities for \(r = 1, 2, 3 \)
and 4 from the recurrence relation of the Poisson distribution. Also find \(P(r \geq 4) \).

(b) Given the following information in the usual notations:

\(n_1 = 7, n_2 = 6, S_1^2 = 6.21, S_2^2 = 5.23, \bar{x} = 30 \) and \(\bar{y} = 28 \).

Test the hypothesis that the two samples have come from population having equal means.

3987

3

P.T.O.
(c) 100 students of an engineering institute obtained the following grades in Mathematics paper:

<table>
<thead>
<tr>
<th>Grade</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>15</td>
<td>17</td>
<td>30</td>
<td>22</td>
<td>16</td>
<td>100</td>
</tr>
</tbody>
</table>

Using χ^2–test, examine the hypothesis that the distribution of grades is uniform.

6. (a) Find the missing term in the table:

<table>
<thead>
<tr>
<th>x</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>45.0</td>
<td>49.2</td>
<td>54.1</td>
<td>?</td>
<td>67.4</td>
</tr>
</tbody>
</table>

(b) Show that the Regula-Falsi Method has linear rate of convergence.

(c) Given the data $f(1) = 4$, $f(2) = 5$, $f(7) = 5$, $f(8) = 4$. Find the value of $f(6)$ and also the value of x for which $f(x)$ is maximum or minimum.

7. (a) Find the derivative of $f(x)$ at $x = 0.4$ from the following table:

<table>
<thead>
<tr>
<th>x</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>1.10517</td>
<td>1.22140</td>
<td>1.34986</td>
<td>1.49182</td>
</tr>
</tbody>
</table>

(b) Use Picard’s method to approximate the value of y when $x = 0.1$ given that $y=1$ when $x = 0$ and $\frac{dy}{dx} = 3x + y^2$.

(c) Solve the system:

\[x_1 + x_2 + x_3 = 1, \]
\[3x_1 + x_2 - 3x_3 = 5, \]
\[x_1 - 2x_2 - 5x_3 = 10 \]

by Crout’s method.