(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID : 0112

B.Tech.
(SEMESTER-IV) THEORY EXAMINATION, 2011-12
THEORY OF AUTOMATA & FORMAL LANGUAGES

Time : 3 Hours / Total Marks : 100

Note : Attempt all Section as directed.

Section – A

1. Attempt all questions. All questions carry equal marks : 2 × 10 = 20
 (a) Define deterministic finite automaton.
 (b) State Myhill-Nerode theorem.
 (c) Find a regular expression corresponding to the language of all strings over the alphabet {0, 1} that contains at least two 0’s.
 (d) Differentiate between Mealy machine and Moore machine.
 (e) Show that the context-free gramma G given by productions S → SBS/a, B → b, is ambiguous.
 (f) What do you mean by inherent ambiguous CFL?
 (g) Compare PDA with FA.
 (h) What do you mean by instantaneous description of PDA?
 (i) When a language is said to be recursive or recursively enumerable?
 (j) What are the ways of representations of TMs?

Section – B

2. Attempt any three parts. 3 × 10 = 30
 (a) Design a Mealy machine that accepts binary string divisible by 3.
 (b) Construct an NFA without E-mores corresponding to the following NFA.
(c) Show that the language \(\{ 0^n 1^n 2^n \mid n \geq 1 \} \) is not a context free language.

(d) Construct PDA by empty stack which accepts the following:

\(\{ a^m b^m c^n \mid m, n \geq 1 \} \)

(e) For \(\Sigma = \{a, b\} \) design a TM that accepts \(L = \{a^n b^n \mid n \geq 1 \} \).

Section – C

Attempt all questions. \(5 \times 10 = 50 \)

3. Prove that if a language \(L \) is accepted by an NFA then there is a DFA that accepts \(L \).

OR

Prove that if \(L \) is accepted by an NFA with \(\epsilon \)-transitions, then \(L \) is accepted by an NFA without \(\epsilon \)-transitions.

4. Find the regular expression corresponding to the following Finite Automaton:

![Finite Automaton Diagram]

Show that \(L = \{ w w \mid w \in \{a, b\}^* \} \) is not regular.

5. Construct a PDA \(M \) equivalent to the grammar with the following productions:

\[
S \rightarrow aAA \\
A \rightarrow bS | aS | a
\]

Also check whether the string \(abaaaaa \) is in \(N(M) \) or not.

OR

Design 2-stack PDA for language \(L = \{a^n b^n c^n \mid n \geq 0 \} \).

6. Convert the following grammar to GNF:

\[
S \rightarrow ABA \\
A \rightarrow aA | \epsilon \\
B \rightarrow bB | \epsilon
\]

OR

Prove that if \(L_1 \) and \(L_2 \) are two CFLs then \(L_1 \cap L_2 \) may or may not be CFL.

7. Write short notes on any two of the following:

(a) Universal TM
(b) Halting Problem
(c) Church’s Thesis